5,099 research outputs found

    Information flow through a model of the C. elegans klinotaxis circuit

    Full text link
    Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm C. elegans. The models are grounded in the neuroanatomy and currently known neurophysiology of the worm. The unknown model parameters were optimized to reproduce the worm's behavior. Information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit's state-dependent response. (4) The neck carries non-uniform distribution about changes in concentration. Thus, not all directions of movement are equally informative. Each of these findings corresponds to an experimental prediction that could be tested in the worm to greatly refine our understanding of the neural circuit underlying klinotaxis. Information flow analysis also allows us to explore how information flow relates to underlying electrophysiology. Despite large variations in the neural parameters of individual circuits, the overall information flow architecture circuit is remarkably consistent across the ensemble, suggesting that information flow analysis captures general principles of operation for the klinotaxis circuit

    New models for two real scalar fields and their kinklike solutions

    Get PDF
    In this work we study the presence of kinks in models described by two real scalar fields in bi-dimensional space-time. We generate new two-field models, constructed from distinct but important one-field models, and we solve them with techniques that we introduce in the current work. We illustrate the results with several examples of current interest to high energy physics.Comment: 8 pages, 6 figures; To appear in Adv. High Energy Phy

    On a class of n-Leibniz deformations of the simple Filippov algebras

    Full text link
    We study the problem of the infinitesimal deformations of all real, simple, finite-dimensional Filippov (or n-Lie) algebras, considered as a class of n-Leibniz algebras characterized by having an n-bracket skewsymmetric in its n-1 first arguments. We prove that all n>3 simple finite-dimensional Filippov algebras are rigid as n-Leibniz algebras of this class. This rigidity also holds for the Leibniz deformations of the semisimple n=2 Filippov (i.e., Lie) algebras. The n=3 simple FAs, however, admit a non-trivial one-parameter infinitesimal 3-Leibniz algebra deformation. We also show that the n≄3n\geq 3 simple Filippov algebras do not admit non-trivial central extensions as n-Leibniz algebras of the above class.Comment: 19 pages, 30 refs., no figures. Some text rearrangements for better clarity, misprints corrected. To appear in J. Math. Phy

    User requirements for multimedia indexing and retrieval of unedited audio-visual footage - RUSHES

    Get PDF
    Multimedia analysis and reuse of raw un-edited audio visual content known as rushes is gaining acceptance by a large number of research labs and companies. A set of research projects are considering multimedia indexing, annotation, search and retrieval in the context of European funded research, but only the FP6 project RUSHES is focusing on automatic semantic annotation, indexing and retrieval of raw and un-edited audio-visual content. Even professional content creators and providers as well as home-users are dealing with this type of content and therefore novel technologies for semantic search and retrieval are required. As a first result of this project, the user requirements and possible user-scenarios are presented in this paper. These results lay down the foundation for the research and development of a multimedia search engine particularly dedicated to the specific needs of the users and the content

    Errors and Artefacts in Agent-Based Modelling

    Get PDF
    The objectives of this paper are to define and classify different types of errors and artefacts that can appear in the process of developing an agent-based model, and to propose activities aimed at avoiding them during the model construction and testing phases. To do this in a structured way, we review the main concepts of the process of developing such a model – establishing a general framework that summarises the process of designing, implementing, and using agent-based models. Within this framework we identify the various stages where different types of errors and artefacts may appear. Finally we propose activities that could be used to detect (and hence eliminate) each type of error or artefact.Verification, Replication, Artefact, Error, Agent-Based Modelling, Modelling Roles

    3D printing technique for the development of non-planar electromagnetic bandgap structures for antenna applications

    Get PDF
    The use of 3D printing for the development of non-planar electromagnetic bandgap (EBG) structures for antenna applications is proposed. A coplanar waveguide (CPW) fed antenna is tested on a non-planar EBG substrate, fabricated using additive manufacturing techniques. Inexpensive fuse filament fabrication is used as the fabrication process. Silver-loaded conducting ink is employed for the metallic components of the EBG. The CPW antenna on the non-planar EBG structure has a satisfactory reflection coefficient at 2.45 GHz, which is suitable for Bluetooth/WLAN communications. The radiation patterns have reduced back lobes and improved gain compared with the antenna in free space

    On domain walls in a Ginzburg-Landau non-linear S^2-sigma model

    Get PDF
    The domain wall solutions of a Ginzburg-Landau non-linear S2S^2-sigma hybrid model are unveiled. There are three types of basic topological walls and two types of degenerate families of composite - one topological, the other non-topological- walls. The domain wall solutions are identified as the finite action trajectories (in infinite time) of a related mechanical system that is Hamilton-Jacobi separable in sphero-conical coordinates. The physical and mathematical features of these domain walls are thoroughly discussed.Comment: 26 pages, 18 figure

    Virtual libraries of tissue and clinical samples: potential role of a 3-D microscope.

    Get PDF
    Our international innovative teaching group from different European Universities (De Montfort University, DMU, UK; and the Spanish University of AlcalĂĄ, University Miguel HernĂĄndez and University of San Pablo CEU), in conjunction with practicing biomedical scientists in the National Health Service (UK) and biomedical researchers, are developing two complete e-learning packages for teaching and learning medical parasitology, named DMU e-Parasitology (accessible at: http://parasitology.dmu.ac.uk), and biology and chemistry, named DMU e-Biology (accessible at: http://parasitology.dmu.ac.uk/ebiology/index.htm), respectively. Both packages will include a virtual microscope with a complete library of digitised tissue images, clinical slides and cell culture slides/mini-videos for enhancing the teaching and learning of a myriad of techniques applicable to health science undergraduate and postgraduate students. Thus, these packages include detecting human parasites, by becoming familiar with their infective structures and/or organs (e.g. eggs, cysts) and/or explore pathogenic tissues stained with traditional (e.g. haematoxylin & eosin) or more modern (e.g. immunohistochemistry) techniques. The Virtual Microscope (VM) module in the DMU e-Parasitology package is almost completed (accessible at: http://parasitology.dmu.ac.uk/learn/microscope.htm) and contains a section for the three major groups of human-pathogenic parasites (Peña-FernĂĄndez et al., 2018) [1]. Digitised slides are provided with the functionality of a microscope by using the gadget ZoomifyÂź, and we consider that they can enhance learning, as previous studies reported in the literature have reported similar sensitivity and specificity rates for identification of parasites for both digitised and real slides. The DMU e-Biology’s VM, currently in development, will provide healthy and pathological tissue samples from a range of mammalian tissues and organs. This communication will provide a description of both virtual libraries and the process of developing them. In conjunction, we will use a three-dimensional (3D) super-resolution microscopy, 3D Cell Explorer (Nanolive, Lausanne, Switzerland), to incorporate potential 3D microscopic photographs/short videos of cells to provide students with information about the spatial arrangement and morphologies of cells that are essential for life

    Blurred Lines Between Competition and Parasitism

    Get PDF
    Accurately describing the ecological relationships between species is more than mere semantics-doing so has profound practical and applied implications, not the least of which is that inaccurate descriptions can lead to fundamentally incorrect predicted outcomes of community composition and functioning. Accurate ecological classifications are particularly important in the context of global change, where species interactions can change rapidly following shifts in species composition. Here, we argue that many common ecological interactions-particularly competition and parasitism-can be easily confused and that we often lack empirical evidence for the full reciprocal interaction among species. To make our case and to propose a theoretical framework for addressing this problem, we use the interactions between lianas and trees, whose outcomes have myriad implications for the ecology and conservation of tropical forests (e.g., Schnitzer et al. 2015)
    • 

    corecore